

SINCE 1843

EAGLE-PICHER

THE EAGLE-PICHER COMPANY • COUPLES DEPARTMENT: JOPLIN, MISSOURI

	N 65-33 127
GPO PRICE \$	(ACCESSION, NUMBER) (THRU)
CSFTI PRICE(S) \$	(NASA CR OR TMX OR AD NUMBER)
Hard copy (HC)	(CATEGORY)
Microfiche (MF)50	,

ff 653 July 65

INVESTIGATIONS LEADING TO THE DEVELOPMENT OF A PRIMARY ZINC-SILVER OXIDE BATTERY OF IMPROVED PERFORMANCE CHARACTERISTICS

6TH QUARTER

Contract No. NAS-8-5493 Control Number TP3-83728

CPB 13-1600-63

George C. Marshall Space Flight Center Huntsville, Alabama

TABLE OF CONTENTS

	Page
PURPOSE	1
ABSTRACT	2
	3 3
	3
· · · · · · · · · · · · · · · · · · ·	3
•	3
	3
	4
Fractional Factorial Plan Experiment	5
The state of the s	5
b. Procedure	5
c. Analysis of Experimental Results	6
B. Electrolyte Additives	9
▼	10
• •	10
	10
	11
	12
	13
	14
	15
	15
APPENDIX	
No. 1 - Discharge-charge effectiveness silver plate formation study - Series I	16
tion study - Series II	16
No. 1B - Discharge-charge effectiveness silver plate forma-	
	17
	18
No. 3 - Silver plate formation study responses for factorial	
and the same of th	10
experiment	19
No. 4 - Plan (Factorial) for formation study	20
No. 4 - Plan (Factorial) for formation study	20 21
No. 4 - Plan (Factorial) for formation study	20 21 22
No. 4 - Plan (Factorial) for formation study	20 21 22 23
No. 4 - Plan (Factorial) for formation study	20 21 22 23 24
No. 4 - Plan (Factorial) for formation study	20 21 22 23 24 25
No. 4 - Plan (Factorial) for formation study	20 21 22 23 24 25 26
No. 4 - Plan (Factorial) for formation study	20 21 22 23 24 25 26 27
No. 4 - Plan (Factorial) for formation study No. 5 - Analysis of effects - significance No. 6 - Analysis by comparison of means No. 7 - Silver plate formation study No. 8 - Silver plate formation study No. 9 - Silver plate formation study No. 10 - Silver plate formation study No. 11 - Silver plate formation study No. 12 - Silver plate formation study	20 21 22 23 24 25 26 27 28
No. 4 - Plan (Factorial) for formation study No. 5 - Analysis of effects - significance No. 6 - Analysis by comparison of means No. 7 - Silver plate formation study No. 8 - Silver plate formation study No. 9 - Silver plate formation study No. 10 - Silver plate formation study No. 11 - Silver plate formation study No. 12 - Silver plate formation study No. 13 - Silver plate formation study	20 21 22 23 24 25 26 27 28 29
No. 4 - Plan (Factorial) for formation study No. 5 - Analysis of effects - significance No. 6 - Analysis by comparison of means No. 7 - Silver plate formation study No. 8 - Silver plate formation study No. 9 - Silver plate formation study No. 10 - Silver plate formation study No. 11 - Silver plate formation study No. 12 - Silver plate formation study No. 13 - Silver plate formation study No. 14 - Silver plate formation study	20 21 22 23 24 25 26 27 28 29 30
No. 4 - Plan (Factorial) for formation study No. 5 - Analysis of effects - significance No. 6 - Analysis by comparison of means No. 7 - Silver plate formation study No. 8 - Silver plate formation study No. 9 - Silver plate formation study No. 10 - Silver plate formation study No. 11 - Silver plate formation study No. 12 - Silver plate formation study No. 13 - Silver plate formation study	20 21 22 23 24 25 26 27 28 29
	PURPOSE

TABLE OF CONTENTS (Con't)

			<u>Page</u>
FIGURES	3		
No.	1	-	Effect of Activated Stand on Cell impedance 31
No.	2	-	Impedance of Freshly Activated Cell 32
No.	3	-	Cell Impedance Following Thirty Days Activated
			Stand
No.	4	-	Cell Impedance Following Thirty Days Activated
			Stand
No.	5	-	Effect of Stand Discharge Characteristics 35
No.	6	-	Effect of Stand Discharge Characteristics 36
No.	7	-	Effect of Stand on Discharge Characteristics 37
No.	8	-	Effect of Stand on Discharge Characteristics 38
No.	9	-	Effect of Stand on Discharge Characteristics 39
No.	10	-	Initial Discharge Characteristics 40
No.	11	-	Initial Discharge Characteristics 41
No.	12	-	Initial Discharge Characteristics 42
No.	13	•	Initial Discharge Characteristics 43
No.	14	-	Effect of Spongy Zinc Apparent Density Upon
			Discharge Efficiency

I. PURPOSE

The immediate objective during this extended contract period shall be the design of a zinc-silver oxide cell capable of activated stand periods and recharge abilities as follows:

- A. Stand period (or useful life) thirty days
- B. Stand temperature 90° F
- C. Cycle capability six cycles in thirty days
 - 1. Five cycles removing 25% depth
 - 2. A final discharge of 100% capacity
- D. Battery voltage during discharge 28 ± 2.0 volts (1.40 \pm 0.10 volts per cell)

Related studies will be carried out as required to achieve this goal.

II. ABSTRACT

33127

Studies are being directed towards optimizing electroformation processes for the silver oxide electrode. Preliminary data have confirmed that the use of relatively high silver densities (90-110 gram/in³) is not a suitable means of increasing the capacity of a cell. Other studies have yielded data relative to the effect of apparent density and discharge rate upon the efficiency of the spongy zinc plate. Other areas of study underway are as follows:

- A. Electrolyte additives
- B. Effects of carbonation upon KOH electrolyte
- C. Correlation of cell impedance to state-of-charge
- D. Methods of recharge
- E. Effects of cell tightness and volume of electrolyte upon cell performance.

III. FACTUAL DATA AND DISCUSSION

A. Electroformation of the Silver Positive Plate

1. Change Efficiency Study

a. Purpose

As zinc-silver oxide batteries are commonly constructed such that the silver plate limits cell or battery capacity, it is obvious that any process which results in increased state of oxidation of the dry-charged silver plate represents a potential increase in battery capacity. The state of oxidation of the production positive plate is ordinarily estimated by determining the weight increase during the electroformation process, although T. Dirkse (1) has stated that under certain conditions oxygen may be adsorbed by the positive plate during electroformation processes. Oxygen that is adsorbed in this manner may be released in the gaseous state upon discharge of the plate without a corresponding yield of ampere hour capacity. It is believed, however, that under the constant current method of charge the quantity of oxyger added to the silver plate is an adequate indication of the state of oxidation. The object of the studies described below and those to follow is the investigation of various methods of electroformation and, if possible, the improvement of the efficiency and extent of the electroformation process.

b. Procedure

All plates used in these studies were sintered silver and were 2 7/8 x 6 inches. Expanded silver of 4/0 mesh served as the grid. Two 20 ga. silver wires were attached to each plate for current leads. Plate weights in the various tables include only the weight of the silver sinter. Charge effectiveness studies have been carried forward in three series as described below.

1. Series

This section involved the utilization of cells consisting of one silver plate, Vexar separator, (1/4 x 1/4" mesh polypropylene), nickel sheet anodes, and 1.300 specific gravity potassium hydroxide solution as electrolyte. Individual cells were mounted in plastic cases. Series I cells were numbered 1-6. Table No. 1 lists the initial gilver weight of each cell. A charge current of 0.087 amps/in² (three amps total) was impressed upon each series-connected cell for the length of time indicated by Table No. 1. At the end of the charge time, the plate was removed from the cell, washed overnight in flowing water, tested with phenolphthalein indicator to confirm the removal of KOH, and dried to constant weight in a gravity-convection thermostatically controlled hot-air oven at 165° F. The weight increase was taken to be due to oxidation of silver. The percent weight increase based upon sintered silver originally present was calculated.

(1) Dirkse, T.P., Journal of The Electrochemical Society, Vo.117, No. 11, Pg. 862.

An increase of 14.8% would correspond to complete conversion to divalent silver.

2. Series II

Plate and cell construction details for cells of this series are the same as for Series I. All cells of Series II (Cell Nos. 7-12) were charged at a three ampere rate for forty-five hours, then discharged at six amperes for five and one-half hours. Cells were then again placed on charge at three amperes. After 70.5 hours, the silver plate in Cell No. 7 was removed for weight increase evaluation. Cell Nos. 8 and 9 were removed following total times of 83 and 95.5 hours respectively. At the end of 95.5 hours, Cell Nos. 10 and 11 were placed on charge at the six ampere rate. cells were removed following four and eight hours at the increased charge rate. (99.5 and 103.5 hours total respectively). The plate in Cell No. 12 was removed at the end of 117 hours, after having been on charge at 3 amperes continuously from the 50.5 hour point with no high rate-of-charge Rinsing, drying, and weight increase determinations were the same as for Series I.

3. Series III (Cell Nos. 13-17)

Cell construction techniques again were the same as for Series I. A cells were placed on charge at the three ampere rate for 45 hours. For the following eleven hours (to t=56) cells were placed on discharge at a six hour rate. Cells were returned to the three ampere charge rate following 56 total hours. After 83 hours, Cell No. 13 was disassembled and the positive plate rinsed, dried and weighed. The plate from Cell No. 14 was removed at the end of 95.5 hours. Cell Nos. 15 and 16 were placed on charge at six amperes at t=95.5 hours. Cell Nos. 15 and 16 were removed following 99.5 hours and 103.5 hours total and treated as all other plates. Cell No. 17 was removed after a total of 117 hours, having charged continuously at three amperes from t= 56 hours. Weight increases for cells of Series III are listed by Table No. 1(b).

c. Results and Discussion

Charge Effectiveness Investigation - The results and conditions of formation of silver plates under various procedures are tabulated in Table Nos. 1-16. A summary of the results is presented by Table No. 2. The silver plate from Cell No. 4 displayed the largest percent weight gain of the 17 plates in this group. This was 13.35% (90% of theoretical). This plate was subjected to 83 hours uninterrupted charge at the three ampere rate. Table No. 1a indicates that there may be considerable plate-to-plate variation in charge, characteristics after the gassing potential is reached. There was no obvious consistent variation of plate weight increase with additional charge, nor was there any confirmation of significant increase in weight after 83 hours continuous charge at the three ampere rate. Table No. 2 lists

plates from Series Nos. I-III which displayed the greatest weight increases, along with their charge procedures.

2. Fractional Factorial Plan Experiment

a. Purpose

In order to investigate possible effects of electroformation current density, temperature, plate weight and apparent density upon the electroformation process, the following test was conducted. A fractional factorial experiment was designed following Addelman's Plan No. 11 (using columns 6, 7, 8 and 9) found in "Orthogonal Main-Effect Plans" Addelman-Kempthorne (Iowa State University). The plan was followed utilizing twenty-seven trials (3⁴⁻¹); a 1/3 full factorial. The factors and levels were:

FACTORS		LEVELS	
	High	Medium	Low
Temperature (F)	120	100	80
Current density (amp/in ²)	0.088	0.044	0.022
Silver ewight (gm/in ²)	9.5	9.0	8.5
Silver density (gm/in ³)	110	100	90

b. Procedure

Details of the plan are listed in Table No. 4, in which the combinations of levels incorporated into each test cell are delineated. Plate dimensions, grid and terminals for these test cells were the same as previously described. However, the individual plates were carefully selected to conform to the levels of silver weight and apparent density. Approximately 250 ampere hours charge were impressed upon each plate during the formation process. In terms of elasped time of formation this means that the nine plates under the high current density charge were formed for approximately 84 hours; those under medium current density for approximately 166 hours; those under the low current density charge were formed for approximately 332 hours. At the end of the appropriate charge time, the plates were removed, washed, dried, and weighed as described previously. The percent weight gain was considered to be "response" of the plates and these data were utilized in the statistical analyses given in the following sections.

The following methods of analysis were performed utilizing the responses mentioned: 1) Mathematics for half-normal plot (no plot made, since only four comparisons were studied); 2) Analysis

by comparison of means gave fairly conclusive indications, the other analyses were conducted to allow estimation of the "significance" of the effects of the test variables.

The response values for the individual cells (plates) as accumulated in this experiment are tabulated in Tables No. 3 and No. 4. As indicated previously, these were the calculated percents of increase in weight for the silver in the plates. Table No. 4 shows the plan in detail with the levels of each factor for the individual plates given in detail. The level of each factor is shown as follows: low = 0; medium = 1; high = 2. Also shown in Table No. 4 are the coded values of the levels arranged for the computation of the linear comparison of each effect. These are: 0, -1, 1, (as shown). This analysis yielded the significance of effects values displayed in Table No. 5. It appeared, therefore, that the linear comparison of density of Ag in the plates was the notably significant effect. It also appeared that the significance lay in the direction of low density which means that lower density yields larger responses. There is a certain amount of subjective interpretation involved, however, since no normal plot of significance was possible. This was due to the fact that only four comparisons of effects were made. To construct a complete half-normal plot twenty-six values are required, since there are twenty-six degrees of freedom available.

In view of the above, an additional analysis was performed in which the data were analyzed by a comparison of the means of the responses accumulated. In Table Nos. 6 through 8 are listed the responses arranged for this analysis. It should be pointed out that data are displayed to show the effects of temperature, silve weight, and silver density as collected at the three rates of current density, high, medium and low. The level of each effect is shown as follows: high = H, medium = M, low = L. The detailed analysis of the comparison of means are displayed in the following section.

Analysis of Experimental Results

1. High Current Density (0.088 amp/in²)

a. Temperature

Low	Medium	High	Mean
9.51	10.44	9.42	9.79

Formation at the medium temperature (100° F) yielded a gain of 0.65 units higher than the mean.

b. Silver Weight (grams)

Low	Medium	High	Mean
9.99	9.82	9.60	9.80

Formation at the medium weight of silver yielded a gain of 0.19 units higher than the mean.

c. Silver Density (grams/in³)

Low	Medium	High	Mean
12.19	9.79	7.46	9.81

Formation at the low silver density yielded a gain 2.28 units higher than the mean.

The optimum conditions at high current density appeared to be: Medium temperature, low silver weight and silver density.

2. Medium Current Density (0.044 amp/in²)

a. Temperature

Low	Medium	High	Mean
11.47	9.42	9.84	10.24

Formation at the low temperature yielded a gain 1.23 units higher than the mean.

b. Silver Weight (grams)

Low	Medium	High	Mean
10.02	10.63	10.09	10.24

Formation at the medium silver weight yielded a gain 0.19 units higher than the mean.

c. Silver Density (grams/in³)

Low	Medium	High	Mean
11.63	10.66	8.78	10.36

Formation at the low silver density yielded a gain 1.27 higher than the mean.

The optimum conditions at medium current density appeared to be: Low temperature, medium weight and low density.

3. Low Current Density (0.022 amp/in²)

a. Temperature

Low	Medium	High	Mean
10.77	9.54	9.24	9.85

Formation at the low temperature yielded a gain 0.92 units higher than the mean.

b. Silver Weight (grams)

Low	Medium	High	Mean
10.34	11.11	9.16	10.20

Formation at the low silver weight yielded a gain 0.91 units higher than the mean.

c. Silver Density (grams/in³)

Low	Medium	High	Mean
10.87	9.27	9.39	9.84

Formation at the low silver density yielded a gain 1.03 units higher than the mean.

The optimum conditions at low current density appeared to be: low temperature, low silver weight, and low silver density.

The above analysis also indicated that the preferred effect (common to all current densities used) was that of low silver density.

In order to confirm this as the significant effect it was decided to analyze the data by the statistical method, requiring considerable mathematical calculation of Analysis of Variance. Accordingly, the data were arranged for the Analysis Variance. This arrangement appears in Table No. 9, in which the data are arranged for the determination of the effect of temperature; Table No. 10, in which the data are arranged for the determination of the effect of current density; Table No. 11, in which the data are arranged for the determination of the effect of silver weight and Table No. 12, in which the data are arranged for the determination of the effect of silver density. The detailed computation is shown at the bottom of each of the tables mentioned above. Each of these required the calculation of a correction factor, total sum of squares, and a sum of squares for the effect being analyzed.

These values are summarized in Table No. 13, a summary of the analysis of variance. The total degrees of freedom are 26, since there were 27 samples (trials). Each effect investigated has 2 degrees of freedom, since there were three levels of each effect involved. Therefore, the residual (error) degrees of freedom are 18, by difference. The corrected sum of squares for each effect (Table Nos. 9 through 12) was divided by the number of degrees of freedom to obtain a "mean squares" value for each. Each mean squares value was then divided by the residual (error) mean squares figure to yield the F test value. These F test values when compared to those appearing in Davies "Design and Analysis of Industrial Experiments" yielded the significance values shown. The only effect shown to be significant by this Analysis of Variance was that of the silver density.

In order to determine which level (high, medium, low,) of silver density was preferred the calculation shown in Table No. 14 was carried out. A computation of variance for each level was made and these were compared with the mean response for each level. For high silver density the variance was found to be 21.53 compared with a mean of 8.41. For medium silver density the variance was found to be 18.88 compared with a mean of 9.91. For low silver density the variance was found to be 16.23 compared with a mean of 11.57. In this analysis the low density silver was again determined to be preferred.

B. Electrolyte Additives

1. Object

The objective of this area of study is to evaluate electrolyte additives which might cause "gelling" and therefore, retention of electrolyte within the separator system.

2. Procedures

As a preliminary step attempts were made to prepare solutions of two materials in potassium hydroxide - water systems. These were carboxymethyl hydroxyethyl cellulose and a commercial product designated as Vee Glass. The latter is essentially a mixture of mineral silicates and oxides, which, upon dispersions of one, two and four per cent (by weight) of Vee Glass in 1.400 specific gravity hydroxide solution, and two, four and six per cent CMHEC in 1.400 specific gravity potassium hydroxide solution. This was done by measuring the appropriate ratios of materials and mixing for three minutes at high speed using a Waring Blender.

3. Results

CMHEC dispersed readily in the electrolyte solution. Upon activation of cells with these gels, the liquid portion was absorbed by the cell components, leaving a residue of solids above the cell groups.

The Vee Glass apparently did not disperse in the caustic solution, as indicated by the settling of material and the apparent lack of increase in the viscosity of the electrolyte. Other products will be examined for the desired dispersion properties and evaluated in cells if preliminary tests are promising.

C. Effect of Carbonation of Electrolyte

1. Object

In view of the degradation of cellulosic separator membranes, with the resulting carbonation of the electrolyte, it was considered worthwhile to evaluate the effects of progressive carbonation upon the pH and conductivity of a 1.400 specific gravity solution of potassium hydroxide.

2. Procedure

Dry CO2 gas was bubbled into a caustic solution at a measured rate of Both conductivity and pH were constantly monitored. Samples of electrolyte were taken periodically for analysis of potassium hydroxide and potassium carbonate content.

3. Results

This determination has been completed. However, certain temperature corrections upon the conductivity values must be computed prior to the final correlations. These data will be reported in the monthly report covering progress through January, 1965.

D. Cell Capacity and Effects of Top Charge

Orders have been placed with the Eagle-Picher Department for the cells necessary for the following determinations.

- A statistical estimate of cell capacity as constructed, that is, with no charging prior to initial discharges.
- 2. Estimation of the charge acceptance of freshly activated cells at an 0.5 ampere rate to an end-of-charge voltage of 1.98 volts per cell.
- 3. Initial discharge capacity of cells top-charged as in "2" above. Difficulty in production scheduling has prevented the delivery of these cells to the present time.

E. Effect of Cell Tightness and Quantity of Electrolyte

A study is planned to evaluate the combined effects of cell tightness and quantity of electrolyte in the cell. This will be done by employing three volumes of electrolyte in test cells at each of three levels of tightness. study will be performed as a full replicate. That is, all possible combinations will be tested. The following is a summary of pertinent factors of the study:

Factor A, Cell Tolerance

 A_0 - 0.025 inch tolerance

 $A_1 = 0.000$ inch tolerance $A_2 = -0.025$ inch tolerance

Factor B, Volume of Electrolyte

Bo - 19.0 cc electrolyte per cell

 $B_1 - 19.5$ cc per cell

 $B_2 - 20.0$ cc per cell

The cell tolerance is that difference between the internal thickness of the cell case and the calculated total thickness of wet cell components. Level A2, which requires a negative tolerance, will be obtained by using plates of such thickness that the cellulosic separator will not be allowed to swell to its maximum ability.

Ratios of positive to negative material in the cells will be kept constant. This means that cell theoretical capacity will vary with the designed tolerance. For this reason, efficiency of utilization of active material will be used as a response, rather than cell discharge capacity.

F. Effect of Activated Stand Upon Cell Impedance

1. Object

It is hoped that these studies might lead to a procedure for determining cell state-of-charge or the presence of defective cells.

2. Procedure

Immediately following activation, cells were placed on open circuit stand at +90° F. Open circuit voltages were monitored daily. In addition, cell impedance was measured periodically by passing 0.5 amperes sinusoidal current through the cells and measuring the resultant A.C. voltage drop across the cells. Figure No. 1 reveals that impedance of freshly activated cells is quite small and does not indicate a point of resonance within the range of frequencies used. Figure No. 2 exhibits the effect of open circuit stand upon cell impedance measured at 500 cps. Figure Nos. 3 and 4 reveal the effect of frequency of determination upon the measured cell impedance following thirty days activated stand. These figures relate to cells having open circuit voltages of 1.85 and 1.60 volts, respectively.

3. Results

It can be seen that the cell which retained a 1.85 open circuit voltage exhibited greatly increased impedance, and no condition of resonance was noted at frequencies up to 15 K cps. The cell having an open circuit voltage of 1.60, however, displayed very low impedance and exhibited a pronounced minimum impedance in the area of 500-1000 cps. Following a discharge, all cells exhibited impedances of the magnitude and frequency disclosed in Figure No. 4. This indicates that cell impedance is a function of the quantity of metallic silver in the positive plate. Cells apparently display low impedance immediately following activation because some metallic silver exists in the dry-charged silver plate. Upon wetting of the plate with electrolyte, local action within the positive plate results in the reaction between metallic silver and divalent silver to produce monovalent silver oxide. This depletion of metallic silver within the plate and resultant formation of monovalent silver oxide (which is more resistant than the divalent oxide) apparently causes the increased cell impedance.

G. Full-Cell Evaluation - Separation Variables

A number of separator combinations have been evaluated in full sized test cells. These were cells having a mean actual capacity of approximately 13.0 ampere hours at the thirty ampere discharge rate. These cells were constructed to provide data relative to the effect of various separator systems upon cell performance.

1. Cycle Evaluation

Combinations of separator materials employed in a preliminary cycle capability studies are listed in Table No. 15. All cells, except where otherwise noted, contained two wraps of 300 Cellophane between positive and negative plates. All cells contained approximately thirty-eight grams each silver and zinc.

TABLE NO. 15
Separator Evaluation - Preliminary Design Study

CELL TYPE	1 & 5	2	3 & 4	6 & 7	8 & 9
Positive "open" separator	#9526 Nylon	#9526 Ny1on	EM-470	EM-312	M-1406
Negative "open" separator	R-35-D	R-35-D	EM-470	EM-312	M-1406
Cycle No. 1 Discharge capacity to 1.10V (ampere hours)	10.5	11.1	8.5	10.1	10.75
Cycle No. 5 Discharge capacity to 1.10V	11.9	*	11.8	11.5	12.0

Material Identification

#9526 Nylon - Woven Polyamide - 0.0035 inches thick

EM-312 - "Entangled" nylon fibers with Dynel binder, - 0.0035 inches thick

M-1406 - "Entangled" nylon fibers with Dynel binder, - 0.0025 inches thick

R-35-D - Non-woven rayon fibers, - 0.0035 inches thick

EM-470 - Non-woven Dynel

* This cell failed to accept recharge following the initial discharge.

2. Test Procedure

Cells were activated with 20 cc of 1.300 specific gravity potassium hydroxide solution and allowed to soak for four hours. They were then discharged at a thirty ampere rate to 1.10 volts per cell. This discharge was conducted to determine the effects of the various open separators upon initial performance characteristics. Although only voltage above 1.30 volts per cell is useful, the discharges were carried further to determine the nature of the "knee" of the discharge curves.

Cells were then recharged at 2.0 amperes to an end voltage slightly lower than 2.0 volts per cell - the point at which there was visible evidence of the deposition of zinc from the electrolyte. Test cells were then entered into a charged stand at a temperature of $90 \pm 2^{\circ}$ F. Three discharges of six minutes duration at a rate of thirty amperes were conducted in the following month, after which cells were recharged as described above. At the conclusion of this thirty day period, a full capacity discharge was again conducted. Results of these discharges are exhibited by Figure Nos. 5 through 9.

3. Results

One cell, No. 2, which contained a membrane of irradiated Teflon, failed to accept a charge following the initial discharge. Upon examination, it was found that both silver and zinc had penetrated the separator system resulting in internal shorting. The remaining cells contained two layers of cellophane and were treated as follows:

During the final discharge, considerable heating of the cells was noted, as indicated by plastic deformation of some of the cell cases. As revealed by the discharge curves, the capacity of all cells was greater following the thirty day period. This results from the fact that cells were charged to a higher state-of-charge than existed at the time of cell construction. This indicates the possible advantages of a "boost" charge immediately following activation and preceeding the initial discharge. It is also possible that degradation of the cellulosic membrane lowered its electrical resistance, resulting in sustained voltage at a higher level.

Cells ere "post-mortemed" and examined for evidence of near-failures. It was found that silver had penetrated to the second layer of cellophane, although the layer closest to the positive plate contained approximately 4.25 times as much silver. Average total silver loss per cell was 1.64 grams, or about 5% of the total. Silver penetration of this magnitude is regarded as an indication that in a larger sample size some failures might be expected.

H. Negative Material Formulation.

1. Objective

As reported previously, the capacity efficiency of the zinc plate is increased within limits by the use of less dense material. Attention has been given to the combined effects of zinc apparent density and discharge current density upon the efficiency of zinc. These data are necessary to determine the ratio of positive and negative materials necessary for optimum performance.

2. Procedure

Zinc plates of the size employed in test cells were used to construct negative-limited cells. That is, care was taken to insure an excess of positive active materials. All negative plates contained 1.45 grams zinc per square inch, but were pressed to varying thicknesses to obtain the desired material densities. These test cells were then discharged at varying current densities, and the re-

sulting capacity efficiencies calculated. Table No. 16 summarizes the pertinent data. Figure No. 14 reveals the effects of zinc apparent density and discharge current density.

3. Conclusions

It is apparent that for plates of the weight investigated efficiency increases with decreasing material density. As suggested previously, capacity advantages on a volume basis diminish with very low densities of 35-40 grams per cubic inch. At densities in excess of 44 grams per cubic inch, however, the volumetric energy density decreases rapidly, as indicated by the fifth column of Table No. 16.

These data were obtained on initial discharges, and do not reflect possible effects of decreased apparent density upon erosion during stand.

Interpolation of the data in Table No. 16 indicates a possible zinc capacity of just over thirteen ampere hours at the thirty ampere discharge rate for the full size test cells previously described. The fact that this capacity was not realized in these cells indicates that they may have been positive limited. It is planned to obtain similar efficiency data for the silver oxide plate to ensure a more equal practical capacity balance.

TABLE NO. 16
Effects of Apparent Density of Zinc
Upon Discharge Efficiency
(At rate of 0.58 amp/in²)

Apparent Density (Gm/in ³)	Thickness (inches)	Efficiency (Per Cent)	Capacity (A. H.)	Capacity (A.H./milli-inch Thickness)
35	0.042	51	1.98	0.047
39	0.038	45	1.75	0.046
44;	0.034	38	1.47	0.043
50	0.030	30	1.16	0.039
58	0.026	21	0.81	0.031

IV. SUMMARY AND CONCLUSIONS

A. Studies are continuing relative to improvement of the electroformation of silver positive plates. Preliminary studies have indicated that the effect of silver apparent density upon electroformation efficiency overshadows the effects of temperature variations of 80-100° F, formation current densities of 0.022-0.088 amperes/square inch, and plate weights of 8.5-9.5 grams/square inch.

Silver plates having apparent densities of 90-100 grams/in were found to achieve states of oxidation of only approximately 90% of the theoretical. Apparent densities of 90 gm/in resulted in more effective electroformation than higher densities, the 90 gm/in plates achieving 10-15 per cent greater state-of-charge than 110 gm/in plates for a corresponding duration of charge.

Additional studies of densities of 70-95 grams/in³ are being conducted.

B. Electrolyte Additives

No favorable results have been obtained in efforts to produce stable gel electrolytes. A commercial product designated as Vee-Glass refused to disperse in KOH solutions. Carboxymethyl hydroxyethyl cellulose (CMHEC) produced gels which were broken down upon cell activation.

- C. Data relative to the effects of progressive carbonation of 1.400 specific gravity electrolyte are being tabulated. These data were obtained by reacting dry $\rm CO_2$ gas with electrolyte, while monitoring electrical conductivity and pH.
- D. Further full-cell separation evaluations indicate that several separator systems yield comparable initial discharge characteristics, with no apparent effects on cell capacity and minor effects upon voltage.
- E. Cell impedances determined by A-C methods apparently vary characteristically with the frequency employed in the determination. Effort will be made to determine whether it is possible to determine cell state-of-charge by measuring cell impedance.

V. PROGRAM FOR THE NEXT INTERVAL

The following phases of study are planned for the following quarter:

- A. Continuation of positive electroformation. Various silver plate densities ranging from 70-90 gram/in³ will be studied relative to speed and efficiency of electroformation.
- B. Cells employing three ratios of positive-to-negative active material will be tested to determine whether the present ratios are near the optimum for the applicable rate of discharge.
- C. Studies will be begun, on a statistical evaluation basis, relative to the combined effects of all tightness and volume of electrolyte.
- D. Recharge and "top-charge" techniques will be studied, with the object of maintaining maximum capacity on cycle.
- E. The relationship between cell impedance and state-of-charge will be further examined.

VI. PERSONNEL

The following number of man-hours have been expended during the contract period:

Engineering - 3213 hours Technical - 5826 hours TOTAL 9039 hours APPENDIX

TABLE NO. 1

DISCHARGE-CHARGE EFFECTIVENESS SILVER PLATE FORMATION STUDY Series I (formed at 0.087 amps/in²)

Cell No.	Ag Initial Wt. (gms)	Ag Final Wt (gms)		Cng. Hrs.	% Wt Gain
1	130.36	146.13	15.77	30	12.10
2	128.60	144.17	15.57	45	12.11
3	129.01	144.49	15.48	59	11.99
4	130.75	148.20	17.45	83	13.35
5	129.11	145.90	16.79	95.5	13.00
6	128.62	144.55	15.93	117	12.39

TABLE NO. la

DISCHARGE-CHARGE EFFECTIVENESS SILVER PLATE FORMATION STUDY Series II (formed as noted)

Call No.	Ay Initial Wt. (ams)	Ag Final Wt (gms)		Chy. Hrs.	% Wt Gain
7	125.58	141.86	16.28	70.5	10.96
8	107.03	144.05	16.50	8 3-0	12.94
q	130.19	145,94	15 75	ाड इ	12.99
10	105.25	144 35	12.10	99.5	12.55
11	1.8.20	144.55	1 35	1235	12.75
12	130.55	147.55	16.70	11.	12.76

All plates formed at $0.097~\rm amps/in^2~first~45~hours;$ all discharged at $0.174~\rm amps/in^2~45$ - $50.5~\rm hours;$ all on $0.087~\rm amps/in^2~charged$ at $50.5~\rm hours.$

^{*} Cell No. 12 charged at 3 amps continuously from t=50.5 hours

TABLE NO. 1b

DISCHARGE-CHARGE EFFECTIVENESS SILVER PLATE FORMATION STUDY Series III (formed as noted)

Call No.	A, 2 + 1 1 (, n .)	No Final WE (gm.)	Wt.	Chitya;	Gair	
1 3	130,33	147.30	16.95	F3	1.2.00	
14	184.05	145.35	16.30	95.5	12,63	
1.5	124.71	146.55	10.64	44.5	12.83	10
1.6	1 128.35	144.60	18.25	103.5	12.66	(2)
1 /	131.60	148.14	16.50	1:7.0	161	103

All plates formed at 0.087 amp/in² first 45 hours; all on 0.174 amps/in² discharge 45 to 56 hours; at 56 hours placed on 0.087 amps/in² charge.

(1) 0.174 amp/in² charge 95.5 - 99.5 hours

(2) $0.174 \text{ amp/in}^2 \text{ charge } 95.5 - 103.5 \text{ hours}$

(3) $0.087 \text{ amp/in}^2 \text{ charge } 56 - 117 \text{ hours}$

TABLE NO. 2

COMPARISON OF % WEIGHT GAINED

	SER	RIES I		ALLS II	SER	ILS III
Hours	Cad	in Wt	C4 11	2 N/+	(411	we.
	110	Gain	140.	Sair.	Nr.	Cair
30	1	13.10				
4.5	2	12.11				•
59	7.	1197	:			
70.5			7	12.716 (4)		
83	4	13.35 W	8	12.94 (5)	13	13.00
95.5	5	3.57(2)	4	1.(5.4.3 (3)	14	12.63
49.5			10	12.05	15	12/83
103.5			111	12.75	16	12.66-
117.0	6	12.39	12	12.76	17	12.61

NOTES:

- 1. #4 cell plate charged 83 hours at 0.087 amp/in2 rate.
- 2. #5 cell plate charged 95.5 hours at 0.087 amp/in2 rate.
 - #13 cell plate charged 45 hours at 0.087 amp/in² rate; 11 hours discharged 0.174 amp/in² rate; 17 hours charged at 0.087 amp/in² rate.
- 3. #9 cell plate charged 45 hours at 0.087 amp/in² rate; discharged 5.5 hours at 0.174 amp/in² rate; charged 20 hours at 0.087 amp/in² rate.
- 4. #7 cell plate charged 45 hours at 0.087 amp/in² rate; discharged 5.5 hours at 0.174 amp.in² rate; charged 20 hours at 0.087 amp/in² rate.
- 5. #8 cell plate charged 45 hours at 0.087 amp/in² rate; discharged 5.5 hours at 1.174 amp/in² rate; charged 33 hours at 0.087 amp/in² rate.

TABLE NO. 3

SILVER PLATE FORMATION STUDY RESPONSES FOR FACTORIAL EXPERIMENT

Call No.	Initial Ag Weight	Final Ag Weight	9v.★ Wt Gain
Nc.		Ag Weight	Wt Gain
	132.75		
1. 1.		150.25	13.19
2.	141.35	153.13	ප් .33
3	148.17	162.65	9.77
4	139.10	154.85	11.32
5	143.00 •	161.66	13-04
6	134.70	145.71	8.17
7	152.26	16 3.45	7.80
8	1 3 3. 70	147.00	9.97
9	138.39	154.41	11.58
10	132.95	146.56	10.26
11	141.85	158.85	12.00
12	147.90	162.05	9.58
13	138.75	153.38	10.58
14	1 43.63	157.15	9.44
15	134.26	144.45	7.68
16	154.04	164.20	7.44
17	132.90	141.25	6.28
18	138.66	154.22	11,29
19	132. ≘5	144.07	12.24
20	141.95	135.75	9.73
21	151.17	166.65	10.23
35	138.90	182 58	984
23	143.56	162.31	13.05
2.4	134.10	145.35	8.39
2.5	153.45	162.95	6.18
26	133.89	149.47	1165
27	138.65	152.51	10.00

^{*} Used as response figure in all subsequent calculations.

TABLE NO. 4

PLAN (FACTORIAL) FOR FORMATION STUDY

Factor Levels				Analysis	(hai	lf noi	rmal p	lot)	
TEST	EME	C.D.	W1.	DENS.	RELPONCE	T_{L}	C E	WI.	DEN.
1	0	0	٥	0	13.2	0	0	0	0
2	1	2	ı	2	8.3	- 1	1	- 1	1
3	2	1	2	1	9.8	1	- 1	1	- 1
4	0	0	-	I	11.3	0	0	- 1	- 1
5	1	2	2	0	13.0.	- 1	1	1	0
6	2	1	0	5	8.2	1	- 1	0	1
7	0	0	2	2	7.8	0	Ó	1	i
8	1	2	0	1	10.0	-1	7	Ō	-1
9	2	-	1	0,	11.6	1	-1	- 1	0
10	_	·	Ó	0	10.3	-1	- 1		0
11	5	0	ſ	2	12.0	1	٥	- 1	1.
12	0	2	2	1	9.6	0	1	1	-1
13	1	_	1	1	10.6	-1	. [- 1	-1
14	2	0	- 2	0	9.4	1	6	1	0
15	0	2	0	2	7.7	0	1	٥	1
16	(١	2	2	7.4	- 1	- 1	1	1
17	2	0	0	1	6.3	1	0	0	- 1
18	0	2	ı	٥	11.3	0	1	- 1	0
19	2	2	0	0	12.2	1	1	0	0
20	0	i	١	2	9.7	0	-1	-1	1
21	1	0	2	1	10.2	- 1	0	1	- 1
22	2	2	ł	1	9.8	1	1	- 1	-1
23	0	1	2	Ô	13.1	0	-1	1	0
24	1	0	0	2	8.4	-1	0	0	1
25	2	2	2	2	6.2	1	1	1	1
26	0	1	0	1	11.7	0	- 1	0	- 1
27	1	0	1	0	10.0	-1	0	-1	0

TABLE NO. 5

ANALYSIS OF EFFECTS - SIGNIFICANCE

Eirect*	ΣςΧ;	Σc× _i /εc.	Significance
T	-4.2	0.993	0.10
$C.D_{\hat{\mathcal{C}}}$	- 4.3	-1.01	010
Wtu	- 1.2	-0.284	0.00
Dans.	-13.6	- 5.21	c.c,

NOTE: Above significance values obtainable from slope of a half-normal plot.

* Effect

 $T_L = Temp., linear$

 $\mathtt{CD}_{\mathbf{L}} = \mathtt{Current}$ density - linear

Wt_L = Ag weight, linear

 $Dens_L = Ag$ density, linear

Table No. 0
Analysis by Comparison of Means
(Arranged with Respect to Carrent Density)

High Current Density (0.087 amp/in2) A. Temperature

Cell	<u> memb</u> ∙	Ag Wt.	Ag Dena,	Response	Mean	Gp. Mean
19	1	L	L	12.24	9.42	
22	. 1	.1	74	48.0		
25	ಗ ್ತ	н .	Н	6.13		
2	М	м	Н	8.22		
5	IA.	H	L	13.0h	10.1.4	9.79
ડે	\mathbf{A}	L	Н	0.97		;
12	L	Н	14	9.58		
15	L	L	L	7.08	9.51	
18	I.	N i	Н	11.29		
			5. Ag. Wes	lght		
5	14	Ħ	L	13.04		,
12	1.	H	14	9.58	9.60	
25	H	H	Н	6.18		
2	.4	.1	Н,	8.33		
1.8	1.	id	J.	11.29	9.82	9.30
55	Н	А	14	વ. ક્રમ		•
ಕ	.4	Tı.	: !	9. 97		
15	14	L	Н	7.53	a.aq	
10	Н	L	L	12.24		
			C. Ag. De	netty		
5		м	37	6.33		
15	Ţ.,	-15	ч	7.08	7.46	,
25	Н	14	Ħ	5.18		
8	14		14	9,97		
12	L	Н	:4	9.58	9.79	0.81
: 5	H	14	И	9.84		
45	н	'n	L	13.04		
ន	L	14	<u>.</u>	11.20	12.10	
Jø	н	j.	14	15.4		

Overall mann = 9.80

Table (1). 7
Silver Plate Formation Study
Anal sis by Josparison of Means
Arranged with Respect to Current Depaity

Medium Current Density (0.044 amp/in) A. Temperature

Cell	™ e α⊃.	As Wt.	Ag Dens.	Response	:#ean	Ср. Иеал
3	Н	Н	Н	9.77		
3 6	\mathbf{H}	1.	L	8.17	Ο,	
Q	H	14	},	11.58		
16	И	r .	L	10.26		
13	14	H	И	10.58	6.4.2	10°5]r
16	N	H	Н	8, L1.		
20	L	H	11	973		•
23	L	H	L	1.3 .05	11.47	
કહ	\mathbf{T}_{t-1}	L	r.	11.65		
		В.	Ag Weight			
3	H	- i s	A	6.77		
16	14	iı.	Н	7.41.	10.09	
23	L.	. li	L	13.05	•	
c.	1:	14	L	11.58		•
13	14	11	Н	10.08	10.63	10.24
20	L	H	Н	9. 73		
6	Н	-,	Н	8.17		
10	14	L	1.	10 26	12	
26	L	L	и	11.05		
		C. A	g Density			
6	:	5	Н	8.17		
16	14	H	Н	7.144	8.,78	
50	L	M	Н	0.73		
1	i	Н	1.	.71		
13	.4	14	.4	10.58	od. E	10.30
26	IJ	1,	5	11 of	•	
q	Н	.1	.a	1.58		
10	М	L	L	10.26	11.05	
23	L	H	1	13.00		

Overall mean = 10.25

mable No. 8
Silver Place Formation Study
Analysis by Commarison of Means
Arranged with Respect to Current Density
Low Current Density (0.022 amp/1.)

Cell	णुक्रम् १०००	A ; //	ight Ag Dens.	Response	Mean -	Gp. Mean
		Α.	Temperature			
11	Н	14	Н	12,00		
14	Н	Н	L	9.144	9.24	
17	н	Ž.	, N	6.68	,	
21		Н	24	10.23		
5/1	.1	L	H	8. 39	9.54	9.85
21	<i>i</i> 4.	iA	L	10.00		
1	L	L	L	13.19		
11	L	М	14	11.32	20,77	
. 7	1,	Н	3 Å	7.80		
		з.	As Weight			
1 h	Н	li	L	9.1111		
21	·	Н	λ4.	10.23	9.16	
7	L	Н	H	7.80		
11	11	:4	Н	12.00		
c7	11	14	L	10.40	11.11	10.20
1,	L	14	14	11.32		
1/	ıŧ	L	14	0.1:1,		
2	14	L	H	8.30	10. 4	
1	L	L	L	13.19		<u> </u>
		c.	Ag Density			•
11	\mathbf{H}	.4	li	12.00		
5h	H	L	\mathcal{H}	8.34	6.30	
7	L	H	\mathbf{H}	7.80		
17	Н	L	A	o . 2 8		
51	₩ .	H	i4	10.23	9.27	-0°8h
14	L	М	14	11 (2)		
11:	Н	Н	2	9.74	;	
27	.1	.:	L J	10.00	10.87	
1	· • • • • • • • • • • • • • • • • • • •	L	•,	13.19		

Overall mean = 9.445

Silver Plate Formation Study Responses Arranged for Analysis of Variance

Effect of Temperature

	<u> High</u>	Medium	Low	Motal
	9 - 77	8.33	13.19	31.29
	8.17	13.14	11.32	3 2.53
	11.58	9.97	7.80	20.35
•	12.00	10.26	9.58	31.84
	9.1.11	1€.58	7.68	27.70
	6.28	7.111	11.29	25.01
	12.24	10.23	9.73	32. 20
	9.84	8.39	13.05	31.28
•	5.18	10.00	11.65	27.83
∑׿	85.50	88.24	95,29	269.03
$(\Sigma \times i)^2$	7310,25	7786.30	9-180-18	72,377.14

Correction Factor = $(269.03)^2 + 27 = 2080.03$

Total Sum of Squares = (Total, each response) - 03 = 2782 - 2580 = 102

Temperature SS =
$$(7310.25 + 7780.30 + 9080.18)$$
 = $2636.30 - 2680.63$

= 5.67

Table No. 10 Silver Plate Formation Study Responses Arranged for Analysis of Variance

Effect of Current Density

	High	Ard Lun	1,04	Cotal
	8.13	0.17	13.19	11.29
	13.04	8.17	11.32	32.53
	0.07	11.58	1.30	29.35
	9.58	1 26	12. 0	31 - 34-
	7.58	10.58	9.44	27.70
	1.20	7.114	6.78	25.01
	18.34	0.13	19.23	32,20
	0.8h	13.05	3.39	1.23
	0.18	11-55	10.10	27.83
Σχί	88-15	92.23	88.65	269.03
$(\mathbf{z}_{\mathbf{x}_{t}})^{2}$	7770-42	3500.38	7853° 3 5	72, 377.14

Correction Factor = $(209.3)^2 \div 27 = 2080.03$

Potal Sum of Sources π (Total, each response) 2 - CF \pm 2/32 - 2080 π 102

Current Density 35 -(1779.52 + 8909.36 + 7858.82) -97

= 268.173 - 208 0.03 = 1.10

Table No. 11
Silver Plate Formation Study
Responses Arranged for Analysis of Variance

Effect of Silver Weight

	.dgn	:4edium	Nor.	Cotal
	9.77	8.33	3.19	31.29
	13. A	11.32	5.17	32.53
	7.80	11.58	9.97	29.35
	9.58	10.00	10.26	31.84
	9.111	10.58	7.58	27,70
	7.4.	11.20	6.28	65.01
	1:.23	9.13	12.84	32.2
	13.05	· · · · 81t	ક.્વ	31.28
	5.15	10.00	11.05	27.83
Σ×:	86.53	94,57	87.83	259.63
(ZX;)2	74.87.444	14,800.	7714.11	72, 777.11

Correction ractor = $(200.63)^{2} = 27 = 2080.03$

Total Sum of Squeres = (Total, each response) 2 - CF = 2782 - 2080 = 10a

Silver Wt. SS =
$$\frac{(7h87.16 + 8062.11 + 7711.11) - CF}{9}$$

= $\frac{2684.09 - 2580.53}{4.36}$

Cabla No. 12 Silver Plate Formation Study. Responses Arranged for Analysis of Variance

Effect of Apparent Density

	$\frac{161}{25}$ in	<u>Medium</u>	Low	<u>motal</u>
	o• 33	9.77	1 % 1%	32.20
	8.17	₹1.32	15.04	32.53
	7.80	9.97	11.58	29.35
	12.00	4.58	20.26	41.84
	7 - 58	10.58	9.41	27.70
	7.7.24	6.28	11.29	25.1
	9.73	10.23	16.24	32 .2 0
	8. 39	0.8h	13.05	31.28
	0.18	11.05	10.00	27.83
Σ×t	75.15	89.88	1.4.09	259.03
$(\sum x_{+})^2$	5733-56	7960.21	10,834.73	12,377.14
	Comments	Pageon -	: - 500 00 0	27 . 26. 4 20 6.2

Correction Factor = $(609.03)^{\circ} \div 27 = 2680.63$

Total Sum of Squares =
$$(7 \text{ tal., each response})^2 = CF$$

= $2/82 = 208 = 102$

Apparent Density SS =
$$\frac{(5/33.52 + 7900.21 + 10.874.78)}{9} = 6.725.78 + 2080.63$$

= 10.75

Table No. 13 Silver Plate Formation Study

SULMARY OF ANALYSIS OF VARIANCE

Source	df	Sum of Sqs. (Corrected)	Mean Sqs.	F .	Significance*			
Total	26	102	· -	* •	~~~~			
Temperature	5	5.07	2.84	1.12	ap 40 no 40 pa			
Current Dens.	5	1.10	0.55	0.42	₩ ₩****			
Silver Wt.	5	14.36	2.18	0.36				
Silver Dens.	2	1.11. 75	22.38	8.8%,	0.005			
Residual	18	1.5.57	2.53					

Note: of = degrees of freedom, F = Variance ratio

^{*} Davies: 'Design and Analysis of Industrial Experiments, Pable C"

F value must exceed 1.70 for significance of 0.1 F value must exceed 3.09 for significance of 0.005

Table No. 14

Silver Plate Formation Study, Calculation on Variance

SILVE COMMSTOY

Variance
$$-\sum X_{ij}^2 - \frac{(\sum X_{ij})^2}{Q}$$

Variance (sign Dens.) =
$$058.57 - (50.72)^2/9$$

= 2..53 (T = 8.41)

Variance (Med. Dens.) =
$$\frac{903.35 - (80..2)^2}{0}$$

= 18.88 (x = $\frac{9.91}{0}$

Variance (Low Dens.) =
$$1d20.0^{\circ} - (14.09)^{2}/9$$

= 10.23 (x = 11.57)

				:1:		1111	Ī, l									<u> </u>			le i					1 1 1		-			
							1	1	*																			36	7
														1 1 1															
								11.							:::	,					,								
H.	4																											ļ	
			1411							1																		19	
- 1																													
						111					\ \	\. \.		<u> </u>												1.1			
									7 () 1 <u>4</u> ()						: r					1111	1411			111				DC.	
		id								14 ; 1 j , 4											1111		*	; ;;	12.3			NJ.	
			ļH.						il i :	1,11				- 4 1	i											. 1 . 1		11.	
			1 2 7	i .					1			: :i : : : :												::::	: 			Œ.	
11.						iii.			1			: 1										: [-1.]			1111			*	7
	1111		1411	1 1 1 1 1 1 1 1 1 1					:::::						/					:						1 17.	111±	2	
							F.I.E.								/	1141	#11		1121										
		STATO	21											4		$\sqrt{}$			H	1) 		t jid			<u>.</u>	i j		
	4]	TTVATED S			1,1		#1:::		1111		11.			;		\mathcal{I}						i- i- i				1,1	111	ō	
		VAT	à				抽量			1:17						(a)	1		1	III.	H	! ::!					; 1 ; ; ; ; <u>1 ;</u> ; ; ;	69	1.37
2		5			1.11	1111	1111	15.11			<u>1-11</u> .						1		21	•						i :			
AN JOHN TO		EFFECT OF ACTIVATED		+ :										iti											1				
6	1		5			il i							H		li it			1			lili				11.11			to.	
		2	P (1:::		fr. 								1111					\setminus				1.11		.Г.				
		岡			1111	<i>.</i>	1 : 2 7		441:		111	H.:	ia di	riπ											1111	i.H.	1.1.1 1.1.1		: T
														4			i,								1:1:	: + :			
1	**, 1		11111	1 . 1		1111			111L 1111				1					H. I. I.										.	
	+		Ħ.	1.:1				11		. : : h. : : : : :		HH ##	ii, fii	lii i			† † † † † † † † † † † † † † † † † † †									1			
	17,11						-		1														H		<u> </u>				
		13.11		; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;	1:77:1									; ! <u>.</u>	1 : i 1 1		1, 1			, , ,		$-\gamma$		1					
					1 - 1 - 1			Fi :	Щ		1-4-4-4	111		1 1 1 1 4 1				H					/			+1		-ia0	1-11-1
		+					1 7 7 7					I . - : - : :							11		1	$\mathbb{H}\mathbb{H}$							14 - 3
												HH					111				1:1:			1	111.	: ; !			
#			11.11		• • •										1:1				111		111								1
						; = ; 				1 1							1::::		1-				:::	¥	1		1	4	
							+													11			1		\			F1:	
		1				1111	111				10.71				1.1						::!:				1111	1			
		ļ							11:	it.																			
			1	. i . i .				3				:11:							!								\		1
	-		`					. 			•)				?				•			(5					

II W Com 1/2 A 10 INCHES MADE IN U.S.A. . KEUFFEL & ESSER CO.

Frequency of Determination (cps)

			1																							1 1]: .				: i.f:
	ļ.,				<u> </u>									<u> </u>			1											! 	<u> </u>			
				ļ														<u> </u>				L										
1																																
			- ; ; ;									-	.:																			
.												. : .											1111				†					
77																				Ħ							İ					
																		1								<u> </u>	1-					
	ļ.			Ī			1111													-						†				h		
-												7	. :		-											 	 -		1	Ŋ	1	
				 				-								-		1			-		-				<u> </u>				-	
	-		3	 -	+		:::::	-	+			-					-	<u> </u>	1	-		ļ.,			<u> </u>		T	-		<u>.</u>		
			F STAND ON HISCHARGE CHARACTERISTICS				14.									-	-	-				 			-	-	-				-	
	1	11	#	_	\downarrow			-				, i =!			-	-	-	1					/	 	<u> </u>		<u> </u>			n n		-
.i · . 			2	(2)	F											-			1	-		1			6		-					<u> </u>
111			<u> </u>	4	+-		1111		+		1.1		1 1		-	-			1			/ -	9	/		1::::			- 5	n D		
<u> </u>	-	- {	3	ophane	E	-		-							-						- 1	/	/		1111		-	<u> </u>				-
<u>,</u>	-	-	릙_	10	i									111	1		ļ			-	1	-/	1			ļ	ļ			<u>o</u>	1	
- 2	-		3	300 Ce 11	#9526 Nylon	a	Ш			11			1111				ļ.	1		1	1/_	1	 			 	<u> </u>					
FIGURE NO			3	0	255	R-35-D						Ш				1::+		117			 	4			1111	1111		11		. .		1111
_ E			<u> </u>	1	*	74		ļ.,		-+-																	<u> </u>					
P4-	4	-	일.	8	-	_							::1*			1:1-	111		11:11	1111			1111									
: - <u>:</u>		į	5	aration:					.	1.:											L .							: : -		1.1.		
-			31																<u> </u>						1 1 1		1.1.1			u .		
1::			1	Sep													Ŀ															
	_		1つ日 まりむ															•	1				i								i ti	
							1 1 1																	່⊹ : : . ຢ່າ						•	74	
i .			111										. ; ;	li i i				1 1.					, 1	OO	6	,				: :		
Įį.	-						1111						: : : : :	:::										d d					•	3 -		
1			: 1								1:				: ': 11			141					1	0		7-:						
			. . 1										1:::	, ; ; ;	. []										7							
						1,1							1 11								Ĭ.			Third hischarge	Die Gehauf	1						
																				•	1	1	•	ŧŧ	T I		-					
																	ļ		<u> </u>	-	11			• •		-		-				
	-																	1	1		7	4	111	1,	-	-	 	-	-	4		
	+	1	- 1					-									ļ'	111		-	1	٠,						-			 	
	-			1,1	#	+								1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		+		1 1	1			44	11111		1			4			1111	
	-							-		11					E '	HH			h L		+	<u> </u>	7.		Y		<u> </u>					
	-		<u> </u>	1 1 4				+											1:		-	1: 1:		ļ	-						 	1 1 12.
· · ·		-						+					111														1		<u> </u>			
ti i	1::	1.	111			i,			i:L		1111				134	1	1: 1	1:17		1	liii	Ш.		Hili	Hil					T.		

KEUFFEL & ESSER

				,	·								,				, , , , , , , , , , , , , , , , , , , 	,	,										
•						.,											: ;								: : :		. : ::::		
							1.1						1-11		1114	100		1111											
		1 + 1 ·					11							: .		1				-		. 1				:::			
			. ;									1::			ī			- :									1 1		
															. 1 :							. ;				1			
										. ,				111							1								
1 1-			1 1 1			1.1					1 1																		
ĪT.																		14										1	-
Ħ.							11.1						2 1			lii:												Ţ	
	-				1.		1.1								7.1		111												
		i 1								1 1				1:11	L			11											
												-			11.														
		٥ì	11-1		; ; ; <u>;</u>				 													111.	دسد			, c	j J		
1 · · ·		STAND ON DISCHARGE CHARACTERISTICS	1.																	tin				1 1			r		
		Z] _	$\overline{}$	1				4	11.						+ + +											0		Liti	
			(2)				·				Ī								/			-							
																			1	1111				: :: 					
		5	300 Callophane															1		/					1			1 1	
100		8	0				ini.											/	1						1 : 1	- 0			
QN	<u> </u>		8	312						1111					Frin		1		1							H			Ш
FICHRE			300								111						1		/						14	- 4	2		
7. C				1	, PLE		; 1,	-; -				1: 1					+	Ì											
• -	-		aration:		i E						111			111			-	1										<u> </u>	TTI Fili
			49	174 11						1	1 1 1 1 1 1 1 1			11;4				$\ \cdot \ $					-		1.		;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;		
1			Sepa	3 1														-									<u>.</u>		
: ::::::::::::::::::::::::::::::::::::		RFF BCT OF	.ŭ.										-					 						 					
17		<u> </u>																 		17						5	S		
		<u> </u>							i i							 													
		1 [<u> </u>			14												1111	2	0		91	-		- 0)		
		115	1. i.,								LITI Til									The state of the s		b - }		::11 ::: ::::		1 7			
	1111		: i † i					Ł				11.11					1	-		3	į		5			- 4			
		1.1	' '									::::	1				+	+			Ž	7	\$						
		11111	.1	-	1	-				17.11		1. ::					++	1	1:		7		-		-				
1					15.									-			1	4			į								
<u>; ;</u>				1													- }	4	1								j - j		
		-					1										1	1				-				_		1.11	1 1 1
						1111					1::		+	<u> </u>			*	$\perp 1$	+					1					
	-			1111				_			1111	1 1 2			h	?		# .		, ,		¥	-						
					liili Erii							: [1]					-		1			-	ļĪ						
	_	ļ											ļ	ļ						f	-		ļ			:	-		1111
													1.1		1 . ; ! 1 . j . j													Hi	

KEUFFEL & ESSER CO.

KEUFFEL & ESSER CO.

	,	,						,	, , , , ,				,	,															
																													11
rr I						1.11						11																	
						1 -				. 1					- !!!	-											11:1		11:4
<u> </u>										<u> </u>										1111									
1111			-											111	- .			111	1 : 1 :		1	1 1 1		111		1	11.1		4T1.
11:11			21 21												1:::													11:1	
		ļ																					1111	14:1			$\mathbb{H}_{\mathbb{T}}$	i i t	
	1114					11-1			1111												E111					0	0		
					1,11					44							HH			钳						C	4		
											1						ii.											1 1	
											i ji i				11	1111	Цđ					1.*		1::			u 🗒		
	1.11	TE I								77.1	: -			- :				1:1	1						, , , ;			111	
						1 1 1				414			-		1 1 1				/				111			2	<u>; </u>		12.0
		1111										1111					14.	-/											;;.11
		tol			- 1	11:1										1111		1						111	1111		ļΞ	11111	
		TIAL DI SCHARGE CHARACTERISTICS	(2)	£E												1 1		1				1					11.7		
		8		1:1:1		+++				1:11				1 []				/	liii;	111		1-11		1111		2		11111	ŧΕ
1			aug													11.1										ŗ	1		
9	1	8	ophane			H										1411	- 1]					11+1		
		E	Cell									<u> </u>			1		$\cdots I$				TI II	1		niii		1		144	
1119		20		15					+++					Hi	1113			1114											
# AUK JA		8	300	EM-31			i i i i						:;;:				17	11.7	1+1	1111		1 1						- L	Ţ!;:
1		Ę.																1:1:					:						
			:Tot:						11.1				1 -	111			T			1111		111			;†;	-5	F	1111	1
-		¥	H										7.1				-												1 ; 2 l 2 l 2
-			Para								1 11		11111				+	1 11		117		2!!			1	1-5	3		
		INI	Sep		1			li.													111		1 1 1 1						
				+									1.11				.			1, 1					<u> </u>	;;;; x	1		
		+	12.4	1.5	1 .				1										1									F:	
			11:11			<u></u>			11.5																				+
						1																	1:::				0		i‡
		H							1		H	ı;ii			H	Hh													
	11111					+111	1 1										1								-	4		Ī	1
		1-11					1					;;;;						1			111								117 p
1		-	†						1				—					1		-	1117				-				1:11
1:1:			1				-			1						•		+ +	-										
	1:11: 1:12:	-							-		LH	<u> </u>	l	11.11			1	1	\ -		1 1 1			ļ	 		4	-	
			1 14	1111				-	ļ									-	-							111		ļ.,	
	<u> </u>	-				<u> </u>	1										: :		/					L.,	\	1			
															ì	þ	١.,	•		Ç		u :							
										1					-				-	Ť	.	Ť	-						
								Γ	4::									1					:						
				L,								†	†									T							 <u></u> -
		1	11111	1 *** ; .	11:11:	1	1		4 * * * *	1	1		1	1 4	1 1 1	T	1 1 1	111111	1 1 7	1	4 11	4.1	1		1	4 1 1 1 1 1	 1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.1.		11

- 4() -

Minutes on Discharge at Thirty Amperes

		•																											
			111															1::	4						Tiii				
			:																								7 . 1	H:	
	1:																i												
			11		111	i .					11.1									.H.									
													1111				L												
				1													1111										i i i		
											1.							1				. 111			1 1				
	ļ	<u> </u>												117			14			HE								FI.	
							1					Ш,			1.1	1111								111	1			711	
	-	<u> </u>								1.11	, ; ;											1	1 .:				13 () 3 ()		
								11		1 1 1			1:::								111		سر			t	Ú.		
										!!		11	1 1								سر		. : : :	111 1111			.		
	Ш.			+ +																							114-		
		103				1 11			ij!													i	Hii		1.11	2		.1	
			(3)	EΞ	-			111			iH		i		111											- 5	J : : :	1111	
									: <u>:</u> : : :																				
	1::1	팅	Visking	My Lon	i i i i		•											[Tirt.	17.		u	i ii	
	∥_	E .	181	<u>\$</u>	: : : :						<u> </u>							<i>f</i>					1 : 1			0)=		
ş	1-	TIAL DISCHARGE CHARACTERISTICS	B	#9526 N-1804					1111							<u> </u>		1111			4								
	-		133	5 2	H 1 		1111						T 									1 1					3		
101101			Ë								[] [] [] 						•						11						
J2	41 :-		paration:					11		1												1, 11					<u> </u>		
		4	97	1 1 1													-1		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1				1.1				1111		
			S									. L.,	7														J		
											1-1														1, 1				
						1111	·										•								1:::		<u>.</u>		
									-												. <u> </u>				- - - - 		-		12.1
																	4			' i . T		1	<u> </u>			·	•		ei id
													1				1												
											111					1111 1111							1.1.1 				•		11.
			-												1.11		1.17	1			111 			-					
	-																	-	\	i		111.							
																			A							17			
			1.11								<u> </u>				311. 11.1			: : :	1111	4									
							<u>:</u> : :	- ! -												J						11.1			
																								4	1111				
			 †												7). (- 4	<u> </u>	- 1	?		!		-				1 1 1	
						-			1																			*1 1 *411	
	1			1.1		1				1	11:1					1111													
11111	11 .	\cdots	11.00	للفظا	ليظنا												141			1711	1111	1111						, 444	

IIN C 772 X TO INCHES MADE IN U.S.A. . KEUFFEL & ESSER CO.

KEUFFEL & ESSER CO.

									N		Ì		1			
								-		À				1111		
							<u></u>								1.1	
								}			Ì					
															Ø 71	
								1				1			6.0	
																2
	APPARENT DENSITY	<u> </u>										N.			6	Amos / f.n.
7	PARENT							3							£ .0	
ACTIVITY TO	W 20112															Tomosity
1107.4	SPONGY														9.0	, in the state of
															9.5	9040
				i i i i i i i i i i i i i i i i i i i												
			of elicitating				<i>j</i>					L			6 4	1.554
						Ż									0.9	
			E				Į,			1					5.0	
			U L		PC)		4	0		00			11111			
			d w	32 E		05		6				3	1		9	
										9						

DISTRIBUTION LIST CONTRACT NO. NAS 8-5493

	No. of Copies
National Aeronautics & Space Administration, Washington, D.C. 20546, Attn: Miss Millie Ruda, Code AFSS-LD	3
Attn: Mr. Walter C. Scott, Code RPP	1
Attn: Mr. Ernst M. Cohn, Code RPP	1
Attn: Mr. James R. Miles, Code SL	1
Attn: Mr. A. M. Andrus, Code FC	1
Attn: Mr. John L. Sloop, Code RP	1
National Aeronautics & Space Administration, Ames Research Center, Moffett Field, California, Attn: Mr. A. S. Hertzog	1
National Aeronautics & Space Administration, Goddard Space Flight	
Center, Greenbelt, Maryland, Attn: Mr. Thomas Hennigan	1
Attn: Mr. Joseph Sherfey	1
National Aeronautics & Space Administration, Langley Research Center, Langley Station, Hampton, Virginia, Attn: Mr. Harry Ricker	1
National Aeronautics & Space Administration, Lewis Research Center, 21000 Brookpark Road, Cleveland 35, Ohio, Attn: Mr. Robert Miller, Mail Stop 500-202 Attn: Mr. N. D. Sanders Attn: Mr. Martin J. Saari Attn: Mr. Robert L. Cummings	1 1 1
National Aeronautics & Space Administration, Manned Space Craft Center, Houston 1, Texas, Attn: Mr. william Dusenbury Attn: Mr. Robert Cohen	1
National Aeronautics & Space Administration, Marshall Space Flight Center, Huntsville, Alabama, Attn: Mr. William Britz, M-ASTR-EC Attn: Mr. Charles B. Graff, M-ASTR-EC	1 1
Jet Propulsion Laboratory, 4800 Oak Grove Drive, Pasadena, California Attn: Mr. Aiji Uchiyama	1
U. S. Army Engineer R&D Labs., Fort Belvoir, Virginia Attn: Mr. B. C. Almaula, Electrical Power Branch	1
U. S. Army Engineer R&D Labs., Fort Monmouth, New Jersey	_
Attn: Mr. David Linden (Code SELRA/SL-PS)	1
Attn: Dr Adolph Fischbach (Code SELRA/SL-PS)	1

DISTRIBUTION LIST CONTRACT NO. NAS 8-5493

	No. of Copies
U. S. Army R&D Liaison Group (9851 DV), APO 757, New York, New York Attn: Chief, Chemistry Branch	1
U. S. Army Research Office, Physical Sciences Division, 3045 Columbia Pike, Arlington, Virginia	1
Harry Diamond Labs., Room 300, Building 92, Connecticut Avenue & Van Ness Street, N.W., Washington, D.C., Attn: Mr. Robert Goodrich	1
Army Materiel Command, Research Division, AMCRD-RSCM T-7, Washington, 25, D.C., Attn: Mr. John W. Crellin	1
Natick Labs., Clothing & Organic Materials Division, Natick, Massachusetts, Attn: Mr. Leo A. Spano Attn: Mr. Robert N. Walsh	1
U. S. Army TRECOM, Physical Sciences Group, Fort Eustis, Virginia Attn: Dr. R. L. Echols (SMOFE-PSG) Attn: Mr. Leonard M. Bartone (SMOFE-ADS)	1
U. S. Army Research Office, Box CM, Duke Station, Durham, North Carolina, Attn: Mr. Paul Greer Attn: Dr. Wilhelm Jorgensen	1
U. S. Army Mobility Command, Research Division, Center Line, Michigan, Attn: Mr. O. Renius (AMSMO-RR)	1
Hq., U. S. Army Materiel Command, Development Division, Washington 25, D.C., Attn: Mr. Marshall D. Aiken (AMCRD-DE-MO-P)	1
Office of Naval Research, Department of the Navy, Washington 25, D.C. Attn: Dr. Ralph Roberts Attn: Dr. J. C. White Attn: Mr. H. W. Fox (Code 425)	1 1 1
Bureau of Naval Weapons, Department of the Navy, Washington 25, D.C. Attn: Mr. Whitwell T. Beatson (Code RAAE-52)	1
Naval Ammunition Depot, Crane, Indiana, Attn: Mr. E. Bruess	1
Bureau of Ships, Department of the Navy, Washington 25, D. C. Attn: Mr. Bernard B. Rosenbaum (Code 340) Attn: Mr. C. F. Viglotti (Code 660) Attn: Mr. James B. Trout (Code 660S)	1 1 1

DISTRIBUTION LIST CONTRACT NO. NAS 8-5493

	No. of Copies
Naval Ordnance Laboratory, Department of the Navy, Corona, California, Attn: Mr. William C. Spindler (Code 441)	1
Naval Ordnance Laboratory, Department of the Navy, Silver Spring, Maryland, Attn: Mr. Philip B. Cole (Code WB)	1
Wright-Patterson AFB, Aeronautical Systems Division, Ohio, Attn: Mr. George W. Sherman	1
AF Cambridge Lab., L. G. Hanscom Field, Bedford, Massachusetts Attn: CRZE Attn: CROTR Attn: Mr. Francis X. Doherty, Commander (CRO)	1 1 1
Rome Air Development Center, ESD, Griffiss AFB, New York Attn: Commander (RAALD) Attn: Mr. Frank J. Mollura (RASSM)	1
Hq., USAF (AFRST-PM), Washington 25, D.C. Attn: Lt. Col. William G. Alexander	1
Capt. William H. Ritchie, Space Systems Division, Attn: SSZAE-11, Air Force Unit Post Office, Los Angeles 45, California	1
Capt. William Hoover, Air Force Ballistic Missile Division, Attn: WEZYA-21, Air Force Unit Post Office, Los Angeles 45, California	1
Office of the Deputy Commander AFSC for Aerospace Systems, United States Air Force, Los Angeles 45, California Attn: Mr. W. J. Bennison	1
Mr. Charles F. Yost, Asst. Director, Material Sciences, Advanced Research Projects Agency, The Pentagon, Room 3E 153, Washington 25, D.C.	1
Dr. John H. Huth, Advanced Research Projects Agency, The Pentagon, Room 3E 157, Washington 25, D.C.	1
U. S. Atomic Energy Commission, Auxiliary Power Branch (SNAP), Division of Reactor Development, Washington 25, D.C.	1

DISTRIBUTION LIST CONTRACT NO. NAS 8-5493

· · · · · · · · · · · · · · · · · · ·	No. of Copies
Lt. Col. John H. Anderson, Advanced Space Reactor Branch, Division of Reactor Development, U. S. Atomic Energy Commission, Washington 25, D. C.	1
Mr. Donald B. Hoatson, Army Reactors, DRD, U. S. Atomic Energy Commission, Washington 25, D. C.	1
Defense Documentation Center Headquarters, Cameron Station, Bldg. 5, 5010 Duke Street, Alexandria 4, Virginia	1
National Bureau of Standards, Washington 25, D. C. Attn: Dr. W. J. Hamer	1
Power Information Center, University of Pennsylvania, Moore School Building, 200 South 33rd St., Philadelphia 4, Pennsylvania	1
Chief, Input Section, Clearinghouse for Federal Scientific and Technical Information, CFSTI, Sills Building, 5285 Port Royal Road, Springfield, Virginia 22151	1
Aerospace Corp., P. O. Box 95085, Los Angeles 45, California Attn: Library	1
Bell Laboratories, Murray Hill, New Jersey, Attn: U. B. Thomas	1
Boeing Airplane Co., Seattle, Washington, Attn: Henry Oman	1
Burgess Battery Co., Freeport, Ill., Attn: Dr. Howard J. Strauss	1
Calvin College, Grand Rapids, Mich., Attn: Prof. T. P. Dirkse	1
Delco Remy Div., General Motors Corp., Anderson, Indiana Attn: Dr. J. J. Lander	1
Electric Storage Battery Co., Missile Battery Division, Raleigh, North Carolina, Attn: A. Chreitzberg	1
Dr. Arthur Fleischer, 466 South Center St., Orange, New Jersey	1
C & D Batteries, Div. of Electric Autolite Co., Conshohocken, Pa., Attn: Dr. Eugene Willihnganz	1
Electrochimica Corp., 1140 O'Brien Drive, Menlo Park, California, Attn: Dr. Morris Eisenberg	1
General Electric Co., Battery Products Section, P. O. Box 114, Gainesville, Florida, Attn: I. M. Schulman	1

DISTRIBUTION LIST CONTRACT NO. NAS 8-5493

	No. of Copies
General Motors Corp., Box T, Santa Barbara, California, Attn: Dr. C. R. Russell	1
Globe Union, Inc., 900 East Keefe Avenue, Milwaukee, Wisconsin, Attn: Dr. C. K. Morehouse	1
Gould-National Batteries, Inc., Engineering and Research Center, 2630 University Avenue, S.E., Minneapolis 14, Minnesota, Attn: J. F. Donahue	1
Gulton Industries, Alkaline Battery Division, Metuchen, New Jersey, Attn: Dr. Robert Shair	1
Inland Testing Laboratories, Dayton, Ohio, Attn: W. Ingling	1
Johns Hopkins University, Applied Physics Laboratory, 8621 Georgia Ave., Silver Spring, Maryland, Attn: Richard Cole	1
Hughes Aircraft Corp., Culver City, Calif., Attn: T. V. Carvey	1
Livingston Electronic Corporation, Route 309 opposite Springhouse Quarry, Montgomeryville, Pa., Attn: William F. Meyers	1
Lockheed Aircraft Corp., P. O. Box 504, Sunnyvale, Calif. 94088 Attn: Charles Burrell, Dept. 61-33	1
P. R. Mallory & Co., Technical Services Laboratories, Indianapolis 6, Indiana, Attn: A. S. Doty	1
Monsanto Research Corp., Everette 49, Mass., Attn: Dr. J. O. Smith	1
North American Aviation, Inc., 12214 Lakewood Blvd., Downey, Calif., Attn: Burton M. Otzinger	1
Dr. John Owen, P. O. Box 87, Bloomfield, New Jersey	1
Radiation Applications, Inc., 36-40 - 37th St., Long Island City 1, New York, Attn: Munroe F. Pofcher	1
Radio Corporation of America, Astro Division, Heightstown, New Jersey, Attn: Seymour Winkler	, 1
Radio Corporation of America, P. O. Box 800, Princeton, New Jersey, Attn: Paul Wiener	1
Sonotone Corporation, Saw Mill River Road, Elmsford, New York, Attn: A. Mundel	1

DISTRIBUTION LIST CONTRACT NO. NAS 8-5493

	No. of <u>Copies</u>
Space Technology Laboratories, Inc., 2400 E. El Segundo Blvd., El Segundo, Calif., Attn: Dr. A. Krausz	1
Power Sources Division, Telecomputing Corp., Denver, Colo., Attn: J. Sibilia	1
University of Pennsylvania, Electrochemistry Laboratory, Philadelphia 4, Pennsylvania, Attn: Frof. J. O'M. Bockris	1
Yardney Electric Corp., New York, N. Y., Attn: Dr. Paul Howard	1
National Aeronautics & Space Administration, Ames Research Center, Pioneer Project, Moffett Field, California, Attn: James R. Swain	1